
Experience Report: Haskell as a Reagent
Results and Observations on the Use of Haskell in a Python Project

Iustin Pop
Google Switzerland
iustin@google.com

Abstract
In system administration, the languages of choice for solving au-
tomation tasks are scripting languages, owing to their flexibility,
extensive library support and quick development cycle. Functional
programming is more likely to be found in software development
teams and the academic world.

This separation means that system administrators cannot use
the most effective tool for a given problem; in an ideal world, we
should be able to mix and match different languages, based on the
problem at hand.

This experience report details our initial introduction and use of
Haskell in a mature, medium size project implemented in Python.
We also analyse the interaction between the two languages, and
show how Haskell has excelled at solving a particular type of real-
world problems.

Categories and Subject Descriptors D.2.12 [Software engineer-
ing]: Interoperability; D.3.2 [Programming languages]: Language
Classifications—Applicative (functional) languages

General Terms Experimentation, Languages

Keywords Haskell, Python, Ganeti, System administration

1. Introduction
For the past year, our team has developed1 and started to use a set of
tools implemented in Haskell to solve a specific category of prob-
lems that were not best expressed in an interpreted language. This
required learning a new style of programming, becoming familiar
with the tool-chain (compiler, profiler, documentation tools, etc.),
investigating the available libraries and making sure that our new
tools inter-operate well with the Python code. At the end, the ques-
tion was: is the extra effort needed for maintaining code written in
two languages justified? Do we get any advantage out of combining
two high-level, but quite different, languages?

As we try to show in this paper, in our experience the answer
is affirmative, sometimes in non obvious ways. Haskell’s strong

1 As described later in the paper, while the actual Haskell code has a single
author, the entire team has participated in the design and testing of these
tools, and therefore the paper uses the ‘we’ pronoun

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00
This is the author’s version of the work. It is posted here by permission of ACM for
your personal use. Not for redistribution.

type system contrasts markedly from Python’s “laissez-faire” ap-
proach to types, and its cheap-persistence model is the opposite of
Python’s cheap-modification one, while both are in the same high-
level language category where complex data-modification pipelines
are readily available. Such diametrically opposite views on some
topics were very good at highlighting differences, and neither lan-
guage was delegated to the ‘low-level’ versus ‘high-level’ status.

We have observed gains from simply having two different lan-
guages exercise the same API/RPC endpoints; in our case, this
meant that the effort spent to standardise the message types (use-
ful for Haskell) can lead to a more sound framework on the Python
side. Prototyping the same algorithm in both languages led to a bet-
ter understanding and in a few cases optimisations in one language
can be carried to the other side.

Not all was good, however; a few bumps appeared along the
way, in the form of small issues with availability of libraries, per-
formance for some operations, compatibility between different ver-
sions of the base libraries and the higher difficulty of advanced pro-
gramming techniques in a functional language.

1.1 Our contribution
Past ICFP experience reports have focused on either conversion of
software from an imperative language ([Newton and Ko 2009]), or
on using functional programming for an entire project ([Sampson
2009]). Furthermore, reports on the use of functional programming
refer in general to either use in research institutes and universities
([Cuoq et al. 2009] and [Balat et al. 2009]) or in commercial
software development teams (e.g. [Sampson 2009]).

We believe our use of Haskell in combination with Python in
an already existing, mature project and in the context of system
administration represents a different view on the use of functional
programming.

2. The team and the project
Our team is part of Google’s corporate IT system administration
group, dealing with administration of virtual machines. While most
of us have strong Python development skills, and everyone is fa-
miliar with other system administration languages and tools, we
are not, per se, a software development team. Rather the develop-
ment activities are ‘demand-based’ and geared towards automation
of system administration.

As part of our work, we have developed Ganeti (http://code.
google.com/p/ganeti/), a management tool for clusters of vir-
tual machines (e.g. Xen, KVM). Our team has been working on
the project since 2006, open-sourced it in September 2007, and it
was (before the introduction of the Haskell component) written al-
most entirely in Python, with just some small bits of shell and other
languages, mostly for the build system. The objective of Ganeti is
to enable easy management of clusters created from off-the-shelf
hardware, without requiring custom or expensive storage or net-

work gear. As such, we use a quantity of other open-source soft-
ware for managing the physical resources.

For storage management we use DRBD2, a software solution for
over-the-network RAID1 storage. Using RAID1 (mirroring) means
that each virtual disk resides on two physical machines, called the
primary and secondary machine respectively. A virtual machine can
cheaply switch between these two machines (if the other required
resources, e.g. memory, are sufficient), an operation called failover.
Switching a virtual disk from the machine pair (A,B) to (A,C), an
operation called relocation, requires copying the entire disk data
from A to C and thus it is costly.

This dependency of each virtual machine on two physical ma-
chines means that the placement algorithm is not as straightforward
as in solutions using external storage, where any physical machine
can access the entirety of all storage; therefore, we had to develop
tools that can automate the layout computation in order to best use
the resources of each physical machine.

2.1 Layout policies
We anticipated somewhat early in the development of Ganeti that
the actual policies for the layout of virtual machines across (pairs
of) physical machines might differ based on site policies and thus
decided that the actual policy should be left to external scripts,
while Ganeti itself should just implement the mechanism. Thus, we
have a documented API (called the IAllocator API) for things like
given cluster state X, on what pair of machines should new virtual
machine with specifications Y be placed?. Note that this works the
same way for non-mirrored storage, where we simply allocate on a
single physical machine (in a non-redundant setup). The recursive
application of this problem is how many virtual machines can we
allocate on a cluster before we violate site policies or run out of
physical resources.

The allocation problem is also present in a slight different ver-
sion: if a physical machine needs to be removed from the cluster
(e.g. due to hardware failures, or any other reason), the virtual ma-
chines which live on this particular machine need to be relocated to
another member of the cluster. The question is expressed as: given
cluster state X , we want to move a virtual machine from physical
machine pair (A,B) to (A, x); what is the best choice for x?. We
use the same API as above.

A third related problem is computing the ‘optimal’ layout of
the current cluster. This means responding to the question: given
current cluster state X , with physical machine list N and virtual
machine list I , how should we relocate the virtual machines for a
better layout?. This question is not encoded in the IAllocator API,
but we can both extract the cluster state and instruct changes in the
layout via other Ganeti APIs.

A final note is that the layout of virtual machines across the
physical machine pairs has both optimisation aspects (e.g. even
load distribution) and hard constraints. One important such con-
straint is that if a physical machine fails, all its peers must have
enough free memory to failover and run the now offline instances.
In other words: for a given physical machine A and its hosted vir-
tual machines Ii, each living on the machine pair (A, xi), does
each machine xi have enough free memory to accommodate Ii?.
We call this N+1 redundancy, and we flag in our verification rou-
tines any physical machines that fail this check.

2.2 Open APIs
Another key decision early in the history of Ganeti was that, as
much as possible, our APIs and data formats should be language
agnostic. Thus, we moved (for the inter-node RPC) from the orig-

2 http://www.drbd.org/, a networked RAID1 driver usable either in
active-passive or active-active mode

inal Twisted3-based RPC and serialisation format to HTTP and
JSON, and for data storage from Python Pickle format to (again)
JSON4.

While this decision was not made with any specific purpose in
mind, it did help during the development of Ganeti as such data
formats are more stable and very easy to use/modify even from the
shell. Later, it was one of the key factors that allowed the use of
Haskell.

2.3 Introduction of Haskell
The introduction of Haskell in the project was somewhat acciden-
tal. The capabilities of Ganeti itself were growing and it was able to
manage bigger and bigger clusters; but the layout algorithms were
still very weak. Thus, at the end of 2008 the author of the paper
started working towards solving an independent (at that time) prob-
lem, that is the automated computation of the changes needed in
cluster state to solve N+1 check failures.

The initial version of the algorithm attempted a brute-force
search over a limited subset of the solution space, and thus the
Python implementation was very slow. It was also unwieldy, since
throw-away copies of the data are expensive in Python and undoing
modifications in a generic and safe way is not simple.

The next step was intended to be both a learning experience
and a language comparison exercise: how would such an algorithm,
the simulation of cluster state changes when virtual machines are
being relocated, look in a functional language? People familiar
with functional programming might recognise such an algorithm
as a good fit at once; for the author it took a while until he was
convinced that indeed such modelling is easier to achieve in a
purely functional way, using persistent data structures.

2.3.1 Time-line
N+1 solver Initial forays into the Haskell implementation of the
above algorithm proved successful, and after a couple of weeks we
had a tool to automatically compute the solution list (a set of move
virtual machine I from (A, B) to (C, D) commands) needed to
solve the N+1 failures in most of the usual cases. The algorithm
itself was still rough, and due to its brute-force nature it was very
limited in capabilities. One of the biggest limitations was that it
wasn’t able to tell if it will ever manage to find a solution and thus
it tried to explore the whole solution space (which is too big to
compute), thus preventing its use in a fully-automated way.

Cluster balancer The N+1 solver already provided the infrastruc-
ture needed for importing data from Ganeti, so writing a new algo-
rithm was a much smaller effort. Thus, the next goal was another
missing piece of the Ganeti infrastructure, a generic cluster bal-
ancer that takes the state of the cluster and computes “the next best”
state.

The new algorithm is no longer a brute-force algorithm, but an
iterative one that looks in each step at the current cluster state and
computes the next cluster state. This is done without look-ahead,
and without keeping history, so its time and space characteristics
were very good and we soon started testing this new tool in pro-
duction.

At this point, the team made a decision: do we keep developing
the Haskell implementation of the algorithm, or do we rewrite the
algorithm (which was reasonably simple) in Python?

The reasons for staying with Haskell were twofold. First, all the
problems we attack are basically numerical algorithms, thus they

3 http://twistedmatrix.com/trac/, “an event-driven networking en-
gine written in Python”
4 The Protocol Buffers data encoding format, which is used extensively
inside Google, was not open-sourced at the time we did this conversion;
hence the choice of JSON

model very nicely in the pure domain; Haskell was here at its best,
and the performance of the program was very good. Second, the en-
tire Haskell code-base was trivial at this point (roughly 1500 lines
of code, including comments), so the cost of an eventual rewrite
into Python (in case ever needed, e.g. to standardise on a single
language) was deemed low enough as not to be an impediment.

A third, non obvious reason for the initial acceptance of these
tools was that they came at the right time, and filled a very big gap
in our project. The value that they brought was high enough that it
helped overcome the barrier of introducing a new language.

2.3.2 Expansion of the code-base
In the months following the initial acceptance, the project entered a
phase of significant expansion; after a few weeks of use, the ques-
tion changed from “should we use this to automate cluster balanc-
ing?” to “can we add a new rule/constraint to the algorithm?”.

From the team’s perspective, once the initial barrier of accep-
tance was overcome and the tools were stable, there was no reason
to hold back their use. From the development point of view, once
the initial I/O framework was in place and the core algorithm im-
plemented, it was easy to iterate on the code base and extend it with
new features.

Furthermore, after we had some experience with the cluster bal-
ancing tool, we realised that the algorithm we developed could
be used for all our allocation/layout problems; whether placement
of a new virtual machine, or most efficient layout, or computing
the maximal cluster capacity. At this point, we were comfortable
enough with the stability of the code-base to delegate such deci-
sions to it, and continued to iterate on the capabilities of the tools.

2.3.3 Integration with Ganeti APIs
Initially, the Haskell tools were interacting with Ganeti via the
command line interface, which worked but was suboptimal. As
described in section 2.2, the APIs provided by Ganeti use standard
protocols and data formats, so in time it was rather trivial to extend
the Haskell tools to talk to Ganeti directly.

Fortunately, the json, curl and network libraries in Haskell
are stable and have all the needed features for our use, so from
this point of view we have observed no limitations in what regards
library support.

The use of the APIs from Haskell led to interesting discoveries
about the consistency of our Python RPCs, described in section 3.4.

2.4 Results and current status
By the summer of 2009, the tools were stable enough that we also
released them5 as Open Source under the name “ganeti-htools”.
The work on them continued and as of February 2010 we have the
following capabilities:

• Local and remote gathering of data from Ganeti clusters
• Direct job execution for the local transport, or in the case of

remote transport, creation of a shell script with the needed
commands

• Sequencing of jobs customised such that we get the maximum
parallelism when executing them in Ganeti

The software package consists of the following tools:

hbal – computes the needed moves to improve the cluster layout

hail – used as an IAllocator script for Ganeti, for both new virtual
machine placement, virtual machine moves and physical ma-
chine evacuations

5 see the release announcement at http://groups.google.com/group/
ganeti/msg/8a9fef84ff138071

hspace – computes the available cluster capacity

All the tools work based on the same core algorithm:

1. The cluster state is analysed and we compute the current nu-
merical score based on both hard constraints and optimisation
scores

(a) hard constraints represent extremely undesirable cases that
are flagged as errors by Ganeti itself; they degrade the clus-
ter score heavily

(b) optimisation scores are obtained by computing the standard
deviation of normalised metrics (e.g. percentage free mem-
ory on all physical machines is expressed as a value in the
range [0, 1] and the standard deviation of this vector is used
as the ‘free memory score’ metric)

(c) at the end all metrics are summed and they result in the final
cluster weight

2. We then iterate over all the possible virtual machines and their
moves (in balancing) or over all the possible ways to allocate a
new virtual machine, and chose the best (according to the new
score) state

Initially we had only two metrics (percentage memory free,
percentage disk free); the current version has many more:

• percentage free memory, free disk and memory reserved for
redundancy

• ratio of virtual-to-physical CPUs
• experimental metrics for load-based balancing (CPU load,

memory load, disk bandwidth, network bandwidth)
• offline physical machines still hosting virtual machines
• virtual machine exclusion via tags (for example, preventing two

virtual machines used as DNS servers to be hosted on the same
physical machine)

The algorithm is known to be imperfect (e.g. since it does not
look ahead, it can get into a situations from where it cannot execute
any more moves), but in practice it works well enough that all
layout decisions can be done with it, with manual intervention
being very rare.

After the initial implementation and production deployment, de-
velopment proceeded at a somewhat slower pace, but nonetheless
we continued to improve the basic algorithm, implement new fea-
tures, and keep to date with Ganeti changes.

3. Haskell/Python interaction
In the following sections we detail our experiences in combining
Haskell and Python, and some changes to the (already mature)
Python code base as a result of gaining experience with Haskell.
It is important to note that we don’t claim that either Haskell or
Python absolutely enforces a certain programming paradigm; it’s
just that each language has certain characteristics that make it easier
and more natural to program in a certain way.

3.1 Either String in Python
In languages which have native support for exceptions one can
usually find many libraries that offer over-the-wire transport of
exception; for Python, both Twisted and Pyro6 offer transport of
Python exceptions from the server to the client (with just a few
restrictions).

6 http://pyro.sourceforge.net/, “an advanced and powerful Dis-
tributed Object Technology system”

However, there are few, if any, both lightweight and language in-
dependent RPC libraries that offer this. When moving from Twisted
to our HTTP-based RPC in Ganeti, we saw this as a regression
in functionality, and we planned to solve it at a later time. In the
meantime, we started to modify some RPC calls to return a tuple
(Boolean, Payload) with the first member representing success
or failure and the second one being either a string (in case of failure)
or the actual payload. Since this seemed to be a temporary ‘hack’
until we got a real exception propagation framework in place, we
only implemented it for a few RPC calls, in an ad-hoc mode.

After ‘discovering’ the Either String data type in Haskell,
we realised that this is exactly what were using in Python. Far from
being a hack, it’s a simple and elegant way to transport classless
exceptions. We proceeded to rework our RPC framework to have
this as a basic functionality instead of being implemented in the
individual RPC calls, and as a result we gained much better error
reporting across the entire inter-node communication.

It is unfortunate, though, that one has to code algebraic data
types by hand in imperative languages; for many types of problems
they are the most natural way to express values.

3.2 Persistent data types
Python has very weak support of persistent data types; it is neither
possible to mark a complex data structure read-only (in a generic
way) nor to make cheap copies. The only native facility for data
copies is in the copy module, but the speed of a so-called deep-
copy is slower than a manually-coded attribute-by-attribute copy by
a big margin (our tests show factors between three and five times).

These two reasons tend to drive the architecture to careful in-
place updates, even when this a suboptimal solution. After our ex-
perience with Haskell and understanding how much safer copy-
and-modify is, compared to in-place modification-and-undo, we
reused our serialisation framework for a cheap data-copy function-
ality. This was facilitated by the fact that said framework is based
on a two-stage process, first converting from custom objects to
‘standard’ Python types which are then serialised via JSON. By
doing just the initial custom-object-to-standard-object conversion
and then its reverse, we managed to get a simple, albeit slow, data
copying method.

This increased the safety of our code in a number of places,
especially as these data types are used in a multi-threaded envi-
ronment. We envision that careful use of this method can lead to
a semi-pure style of programming in Python. Of course, the best
solution would be to have the ability to ‘freeze’ arbitrary objects in
the Python standard library.

3.3 Functional programming features in Python
The Python language has adopted a few functional programming
features (sometimes directly from Haskell). How do these compare
with their native counterparts?

Probably the first such feature that Python programmers get
accustomed to is a lambda expression. It has, however, a big weak-
ness: Python differentiates between statements and expression;
since lambdas can only contain expressions, they are not as pow-
erful as regular functions. As such, their usage is very limited in
Python, and their future in the language is under question7.

Fortunately, using functions (defined either normally or as
lambda expressions) as normal values is indeed possible without
any restrictions, and this is useful enough that (for example) we’re
using it extensively in our Python code-base. Also the list genera-
tors are similar in both languages, and can be used to good effect
in Python too.

7 The original Python 3000 standard proposed to drop them, but this deci-
sion was reversed during the development cycle

Recently, Python has gained partial function application, how-
ever this was implemented as a library, and not at syntax level.
Thus, actually using this feature is less direct; compare for example
a very trivial example in Haskell:

let fn = map length

with the Python version:

fn = partial(map, len)

The latter is more cumbersome to use, as it breaks the normal code
flow (it is not instantly clear that len will be an argument of map,
one has to mentally parse the partial function call first). Due to
this, and to the fact that it is a recent addition to the Python libraries,
we have not yet started using partial in our Python code.

Another pair of functions present in both languages and which
we use is any and all. While the original Python implementation
(as a library) was similar to the Haskell one, the recent conversion
to built-in functions dropped the predicate argument. This had two
effects: for lists of booleans, their use is simpler, but for lists
where we still need to apply a predicate, the syntax became more
complicated:

result = any(pred(i) for i in lst)

This change is not a big impediment to their use, but it results in
more verbose code.

To summarise, the functional programming tools present in
Python are of mixed quality, making their consistent use hard. It
seems that the process of adopting them from other languages was
not perfect: in some cases they are harder to use, and often they
look like additions, rather than integral elements of the language.

3.4 Ganeti API consistency
Ganeti has roughly four sets of APIs that interest us:

1. command line interface; while mostly used by people, this was
designed to be scriptable such that many tools use this simple
method

2. local UNIX socket, JSON encoded messages; this is the sim-
plest (and fastest) method since it relies on local Unix socket
permissions and security and thus it doesn’t need to do any data
encryption

3. HTTP-based, REST-style API; used for remote querying and
administration (called RAPI)

4. the IAllocator API, a plugin-based framework for allocation
and layout policies; this is an internal API, used between Ganeti
and plugin scripts

The first three API sets are used for querying and changing the
cluster state, while the latter is used for feeding information back
into Ganeti as described in section 2.1.

Except for the first API, which is plain text, all use JSON en-
coded messages which translate into native data types in most lan-
guages. This should make it straightforward to introduce a generic
tool that talks either locally or remotely to Ganeti.

However, when trying to integrate our Haskell program with
Ganeti, we quickly found out that:

• not all APIs exported the same data; the data available via each
API was only a sub-set of the data available in Ganeti

• even for the same data, the actual naming of various properties
differed across the APIs

While any program (independent of the language used) would
have discovered these inconsistencies, static vs. dynamic typing
makes a difference here. In Python, it’s very easy to adjust data

structures on the fly, since we don’t have a strong type system.
Changing a certain variable from Boolean to Integer will work most
of the time without any changes. As such, it’s easier to simply adapt
and have code branches that deal with different versions of a data
format than adjust an entire ecosystem to a format change.

In contrast, our experience with Haskell shows it’s best if dif-
ferences are kept entirely at the representation layer (e.g. it is ac-
ceptable to have a different name for a value in the JSON message)
but not in actual data format, since this means introducing alge-
braic data types which will complicate (via excessive use of pattern
matching) many of the functions manipulating that particular piece
of data.

The effort needed to unify the APIs was small, since the dif-
ferences were somewhat minor; this allowed a streamlined Haskell
implementation, with multiple backends (each talking to a specific
Ganeti API) which return the same data structures; the actual al-
gorithm is then oblivious to the fact that we used an HTTP query
or a Unix socket connection to talk to Ganeti. On the Python side,
this resulted in a saner API overall, which should benefit all its con-
sumers.

3.5 A test version of the “master daemon” in Haskell
As described before, our Haskell project is a set of small tools ex-
ternal to the main Python code-base. The Ganeti software architec-
ture is moderately complex: on all physical machines, a so-called
“node daemon” runs; one of these machines is designated as the
current “master node” and it runs two more daemons: the “master
daemon” which is the one actually responsible for the job execu-
tion and coordinating the node daemons, and “remote API daemon”
which offers the RAPI endpoint described in the previous section.
Commands can be submitted either remotely via RAPI, or locally
on the master node via a set of Python scripts that talk directly to
the master daemon.

In this architecture, the node daemons are doing purely I/O re-
lated work, talking to LVM, DRBD, and the hypervisor in use. The
master daemon manages the cluster configuration (and its replica-
tion) and coordinates the interactions between the node daemons.
This means a significant part of the master daemon is dedicated to
abstract data handling:

1. Accepting incoming jobs from clients

2. Managing the job queue, replicating the jobs to other nodes and
archiving them

3. Executing the jobs, including managing the locking and syn-
chronisation between the different worker threads

As an exercise, we tried to see if it is feasible to implement
a small subset of the master daemon in Haskell, how a Haskell
program that deals heavily with I/O compares to the original Python
code, and whether the advantages seen for the original tools are
replicated to other parts of the code base.

This effort had mixed success. At a basic level, we were able
to implement the basic functionality (accept jobs, local queue man-
agement) and the most basic job type (the null job type), but the
continuous use of the I/O domain changed the style of program-
ming significantly: it looks rather more like our original Python
version than expected (this might also be due to our limited ex-
perience with Haskell). We developed this Haskell version of the
master daemon until we were able to actually run the Python com-
mand line scripts and see a fake cluster, execute job management
commands, etc., at which point we declared the attempt complete.

During the exercise, the use of the GHC profiler has revealed
some deficiencies in our algorithm used for job submission and dis-
patching to the worker threads; since this was copied verbatim from
the Python version, we were able to devise improvements that were

then back-ported to the original master daemon implementation8. It
would have been possible to detect such inefficiencies based on the
Python version, but the profiler support for multi-threaded Python
code is of very low quality compared with the GHC profiler; in
this way, we used the GHC tool-chain indirectly for improving the
Python code.

While benchmarking the two implementations, a surprising re-
sult was that, due to the deficiencies of the standard String data
type in Haskell, serialisation/de-serialisation of JSON messages is
actually slower in Haskell compared to Python (which uses a C-
based module for speedups).

In retrospective, this exercise has proven that it would be fea-
sible to write more parts of our project in Haskell. Even though
the heavy I/O emphasis in some areas does not match entirely
Haskell’s strengths, there are other advantages (like the combina-
tion between read-only data-structures and very “cheap” sparks)
that would make a Haskell implementation attractive.

4. Roadblocks
While our experiments with Haskell were successful and resulted
into production level code, we have had a few small roadblocks
along the way.

4.1 Debugging facilities
Like many other Haskell programmers, we had to debug the famous
error message “Exception: Prelude.head: empty list”,
followed by an abrupt exit from our program.

In standard Python code, this message would have been accom-
panied by a stack trace, including the code fragment that generated
such an exception. In Haskell, however, the available options are
very primitive: either use Debug.Trace (a low-level facility) or
implement changes to the pure code-flow (via the use of a Writer
monad). Combined with the effects of laziness, this makes debug-
ging a complex application much more difficult for the beginner
Haskell programmer than in a scripting language.

Another problem, not particular to Haskell but to compiled
languages in general, is the inability to quickly debug problems on
the deployment systems. Instead, the problem must be replicated
on the development machines. By itself this wouldn’t be an issue,
but it exacerbates the debugging difficulties.

In due time we have learned ways to compensate for both these
problems, but we still find debugging tools a bit weak in Haskell
(e.g. compared to the excellent profiler); the author is looking
forward to developments in this area—e.g. [Allwood et al. 2009].

4.2 Status of library packaging in Linux distributions
While Hackage provides a plethora of libraries, not all of them
are available in Linux distributions, or at least not in the current
stable versions. We’re mainly interested in Debian, since it’s our
test/reference platform.

As an end user, due to the static linking, it’s very easy to
deploy Haskell software: the needed libraries must be available
only on a development machine, while the deployment targets do
not need them. But packaging software for Debian is different, as
it requires that all prerequisites must be available in Debian itself,
for hermetic/reproducible builds across all supported architectures.

We use just three libraries: json, curl and network; at the
beginning of year 2009, neither the json nor curl were available
at all in Debian, and this delayed our packaging efforts. Today, all
are available in the unstable track, and this allowed us to package
ganeti-htools for it, but it is still hard to back-port our software
for the current stable version.

8 an example is commit 009e73d in Ganeti, Optimise multi-job submit

The introduction of the Haskell platform, and the advances in
packaging of the debian-haskell group however makes this an ob-
solete issue; both developers and end-users will be able to consider
the state of Haskell integration on the same level as Python’s in
future Debian versions.

4.3 Rate of change and maintenance effort
One surprising finding during development is that some basic func-
tionality, in our case related to error handling (the use of the
Control.Exception module), changed so much between GHC
6.8 and 6.10 that is hard to write code that works with both ver-
sions, unless one starts to use conditional compilation (via CPP
defines, but this has its own problems), or switch to another library
for error handling (e.g. the extensible exceptions package).

Fortunately we were mostly interested in I/O errors, so we
were able to revert to the simpler error handling in prelude9. But
such changes were surprising to us, and we did pause to consider
how much effort will be needed in the future to keep backwards
compatibility with current deployed systems, while still allowing
use on unstable/development platforms.

4.4 String data type speed issues
As described in section 3.5, even in our limited experience we have
observed the slow speed of the standard String data type. The
author’s initial reaction was to simply look for other libraries in or-
der to solve this problem; but, even though alternatives exist, the
String type is still having a privileged position as the default text
type, and thus many libraries use it by default; as such, the effort
is put on prospective developers to decide “can I use library X or
do I need to find an X-bytestring implementation to get reasonable
speed?”. This situation is unexpected in a language and an imple-
mentation (GHC) that seems in many other ways quite mature, and
the author believes that it adds a non-trivial effort on both sides of
the community: on library authors, who need to provide bytestring-
enabled versions, and on the users of libraries, who need to make
sure their mix of libraries does work as expected and gives reason-
able performance.

4.5 High barrier to entry
Lastly, we believe that the most significant problem is the high
barrier to entry.

Even after the completion of this project, the author feels that
his knowledge of Haskell is very much incomplete, and that he
is far from being familiar with advanced topics (e.g. applicative
programming, generic programming, etc.). Whether this is needed
or not for small projects is debatable—for example, our current
code works with only standard Haskell 98 (no language extensions
in use)—but it might be possible that careful use of advanced
programming techniques will reduce and simplify the code.

The second remark on this topic refers to the difficulty of co-
opting other people to contribute; except for a few trivial patches,
in our project the Haskell component remains a one person effort,
compared to the Python code which has had around three to five
active contributors (depending on project phase).

5. Summary
After using Haskell for slightly more than a year, our conclusion is
that even though the adoption barrier is quite high, Haskell is a good
asset for solving certain types of problems. The combination with
Python has shown to be a success, and we have managed to write a
set of tools that are used daily for solving real-world problems.

For the foreseeable future, our project will remain a dual-
language one; rewriting the Haskell part in Python is doable, but

9 commit 1cf9747 in htools, Change ExtLoader to only handle I/O errors

we would lose the advantages described in the paper for this par-
ticular kind of problem (numerical algorithms). As to the opposite
option, rewriting the Python part in Haskell, there are a few rea-
sons why this is not feasible. First, the Python code-base is signif-
icant (around 30K lines of code), and rewriting a project of this
size would be a huge effort, which is hard to justify. Second, it
is unknown whether our team would be able to successfully re-
implement Ganeti in Haskell, given our limited experience with the
language.

Were we to start the project from scratch, today, it would be a
different proposition. Both Python and Haskell have their advan-
tages, and choosing the right language would be a hard decision.
Nevertheless, after using Haskell in real life to solve actual pro-
duction problems, we believe that—both at language level and at
implementation level (GHC)—it is a viable choice for projects of
similar complexity in the domain of system administration.

Acknowledgments
Many thanks to the Ganeti team in Google for their support during
my initial experiments with Haskell, especially to Guido Trotter
and Michael Hanselmann.

Also, the subject of this paper would have not existed without
Haskell itself, and the many resources created by the community
that enabled me to learn, write and deploy Haskell.

References
T. O. Allwood, S. Peyton Jones, and S. Eisenbach. Finding the needle: stack

traces for ghc. In Haskell ’09: Proceedings of the 2nd ACM SIGPLAN
symposium on Haskell, pages 129–140, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-508-6.

V. Balat, J. Vouillon, and B. Yakobowski. Experience report: ocsigen, a web
programming framework. In ICFP ’09: Proceedings of the 14th ACM
SIGPLAN international conference on Functional programming, pages
311–316, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-7.

P. Cuoq, J. Signoles, P. Baudin, R. Bonichon, G. Canet, L. Correnson,
B. Monate, V. Prevosto, and A. Puccetti. Experience report: Ocaml for
an industrial-strength static analysis framework. In ICFP ’09: Proceed-
ings of the 14th ACM SIGPLAN international conference on Functional
programming, pages 281–286, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-332-7.

R. R. Newton and T. Ko. Experience report: embedded, parallel computer-
vision with a functional dsl. In ICFP ’09: Proceedings of the 14th ACM
SIGPLAN international conference on Functional programming, pages
59–64, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-7.

C. J. Sampson. Experience report: Haskell in the ’real world’: writing
a commercial application in a lazy functional lanuage. In ICFP ’09:
Proceedings of the 14th ACM SIGPLAN international conference on
Functional programming, pages 185–190, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-332-7.

