
Haskell as a reagentResults and Observations on the Use of Haskell in a Python ProjetIustin PopGoogle In.ICFP 2010
Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 1 / 13



Outline
1 BakgroundOur projetHaskell additions2 Observations on the use of HaskellWhen, how, why

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 2 / 13



Bakground Our projetGaneti
Cluster-based virtualization management toolStarted in 2006, open-soured in 2007Used in prodution:

◮ Google internal infrastruture
◮ External users (osuosl.org, grnet.net, et.)Written in Python, uses many opensoure libraries/tools

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 3 / 13



Bakground Our projetWhat was missing?
Sysadmin team, hene foused on �glue� ode:

◮ system automation
◮ integration of toolsBut high performane numerial algorithms were not our fous:
◮ Cluster layout was manual, a non-trivial problem (for us)
◮ Python-based experiments unsatisfatory

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 4 / 13



Bakground Haskell additionsAutomati layout algorithms
Started with a small idea for a set of bin-paking problemsFirst implementation in PythonRewrote in OCamlThen rewrote in HaskellIterated over many weeksKept the Haskell versionEnded up with a very dumb automati luster layout program

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 5 / 13



Bakground Haskell additionsOne year and a half laterExtensive use of the Haskell tools:
◮ alloation poliy
◮ luster balaning poliy
◮ node drain (evauation) poliy
◮ apaity alulationSame ore algorithm used in all asesBased on multiple luster metrisExtensive integration with the Python ode:
◮ ommuniation via multiple APIs
◮ JSON data formatIustin Pop (Google In.) Haskell as a reagent ICFP 2010 6 / 13



Observations on the use of HaskellOutline
1 BakgroundOur projetHaskell additions2 Observations on the use of HaskellWhen, how, why

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 7 / 13



Observations on the use of Haskell When, how, whyGetting a foot in the door
You must solve a non-trivial problemAt the right timeWith the right toolsUnonventional solutions require unonventional problems

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 8 / 13



Observations on the use of Haskell When, how, whyHaskell: the good parts
Solved the problem�in a nie way

◮ Good resoure usage
◮ Nie tools for pro�ling
◮ Easy to extendLed to improvements in the Python odebase
◮ better API onsisteny
◮ small-sale use of persistent data types

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 9 / 13



Observations on the use of Haskell When, how, whyParameter validationFramework developed after the paper was writtenRoughly 100 lines of Python, delaring some base �parameter types�Whih an be ombined to math most usual Python typesHaskelldata HVType = HVXen | HVKVM | HVLXCdata EHVMod = Maybe [HVType℄f :: EHVMod -> Data.Map String Int -> ...PythonHVType = TElemOf([�HVXen�, �HVKVM�, �HVLXC�℄)EHVMod = TOr(TNone, TListOf(HVType))def fn(x, y):EHVMod(x) # raises exeption if not orretTDitOf(TString, TInt)(y)Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 10 / 13



Observations on the use of Haskell When, how, whyHaskell: the bad partsProdution readiness:
◮ ease of deployment (good)
◮ stability (good)
◮ ease of debugging (uh. . . ):

⋆ stak traes
⋆ logging
⋆ error handlingLazy behaviour (but no so muh)String issues

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 11 / 13



SummarySummary
Haskell an be a viable languange in system administration:

◮ High performane, low resoure usage, highly expressive
◮ It pairs well enough with other languagesIf the problem is well-hosen:
◮ should take advantage of language
◮ should be non-trivialIt's fun! IMHO, YMMV, et.

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 12 / 13



Appendix For Further ReadingFor Further Reading
http://ode.google.om/p/ganetihttp://git.ganeti.org/

Iustin Pop (Google In.) Haskell as a reagent ICFP 2010 13 / 13

http://code.google.com/p/ganeti
http://git.ganeti.org/

	Background
	Our project
	Haskell additions

	Observations on the use of Haskell
	When, how, why

	Summary
	Appendix
	Appendix
	



